

Taxonomies and Text Analytics for Recommendation Systems

KM World Connect: Text Analytics Forum November 18, 2021

Heather Hedden Data & Knowledge Engineer Semantic Web Company

Heather Hedden

Data and Knowledge Engineer Semantic Web Company

Over 25 years of experience in developing and managing taxonomies, metadata, and other knowledge organization systems for various organizations and applications.

Prior taxonomy consultant and staff taxonomist.

Instructor of self-paced online taxonomy courses.

Author of the book *The Accidental Taxonomist*.

Semantic Web Company (SWC) and PoolParty

SWC is developer / vendor of PoolParty Semantic Suite

Most complete and secure Semantic Middleware / Semantic Al platform on the Global Market

W3C standards compliant

ISO 27001:2013 certified

Current version 8.0

On-premises or cloud-based

Over **200** installations world-wide

Semantic AI: Fusion of Graphs, NLP, and Machine Learning

Named as Visionary in **Gartner's Magic Quadrant** for Metadata Management Systems 2019, 2020

KMWorld listed PoolParty as one of the **Trend-Setting Products**

Trend-Setting Products

2015 - 2020 and listed SWC in the **AI 50** list of companies in 2020

- Why Recommendation Systems and Types
- HR Recommender Example Demo
- How a Semantic Recommendation System is Built: HR Recommender Example
 - Taxonomy and Ontology Development
 - Text Mining
 - Knowledge Graph and Search Application

Why Recommendation Systems

Getting the right information to the right people

- There is a lot of information and content people can benefit from; they don't know how best to look for information that would benefit them.
- They don't know that the information is there or how to find it.

Making matches of what goes together

Standard search does not support complex matching queries.

A system that provides **suggestions** or **recommendations** to users can be very helpful.

Why Recommendation Systems

A recommender system (engine) can recommend to its users:

- content of interest
- products to purchase
- people to connect with
- job opportunities
- training to improve skills
- knowledge assets to reuse

A match-making kind of recommender system can recommend:

- matches of applicants to job openings
- matches of consultants to projects
- matches of buyers and sellers

Recommender System Types

Recommender Technologies

- 1. Content-based filtering Similar content recommended based on a single user's interactions
 - Can only make recommendations on previous interactions or feedback of the user
- 2. Collaborative filtering Recommendations based on interactions from multiple similar users
 - Requires a large number of users
- 3. **Support Vector Machines (SVM)** Machine learning classification method, using algorithms, training examples, statistical learning, which calculates distances between categories.
 - Often used in combination with collaborative filtering
- 4. Knowledge-based systems Based on explicit knowledge of the content, stored in a graph database, making use of a knowledge graph

Recommender System Types

Disadvantages to both content-based and collaborative filtering

- New users or items, which had not been trained upon, don't get recommendations initially: "cold start" problem due to insufficient data.
- By recommending more of the same, new ideas are lacking; it becomes an echo chamber
- By recommending more of the same, system does not "understand" what makes a good recommendation.
- The choice made by the algorithms are not apparent.
- Can only recommend to the user and not do other matchmaking.

Disadvantages of Support Vector Machines (SVM)

- Requires time to train data, and performance varies based on the data.
- Designed for limited, distinct content and categories; doesn't have the benefit a taxonomy with synonyms and semantic relationships

HR Recommender Example

A semantic recommendation/matchmaking tool based on a knowledge graph

Use case

- An organization wants to make the best use of the strengths and skills of its employees.
- Employees, as self-service users, should be able to:
 - Connect with interesting coworkers
 - Browse relevant projects
 - Find career opportunities within the organization
- Matchmaking HR staff should be able to:
 - Find candidates for open positions
 - Staff projects
 - Identify professional development needs

HR Recommender Example

OVERVIEW EMPLOYEES PROJECTS OPEN POSITIONS ABOUT	MY ACCOUNT LOG OUT
Meet these Employees RESET SLIDERS Move the sliders to see the coworkers that best match your strengths	Footprint status
Matthew Walker JavaScript, HTML, C++, C#, PHP, web programming, Prolog, AJAX, Pascal, C get in contact	
 Florian Ber Richard Richard Richard Sophie Whit Maria Sanz 	nd hyour hyour hyour he lon efine- ito th.
CSS, style sheet languages, Python, PHP, MATLAB, web programming, objective-C contact	Direct matches are displayed in black and matches derived from the knowledge graph in gray.
Erico Ramos computer science, JavaScript, PHP, JavaScript Framework, Pascal, Perl, Objective-C get in contact	Improve your matches by clicking on the button above.
Nathaniel Jones JavaScript, Python, ASP.NET, JavaScript Framework, AJAX, Objective-C, integrated development environment software get in contact	READ MORE

How the Recommendation System was Built

HR Recommender Components

- 1. Semantic model
 - Taxonomies containing concepts and labels
 - Ontology of semantic relations
- 2. Content that is text-mined
 - CVs, personal profiles, job descriptions, project descriptions
- 3. Stored data
 - Knowledge graph and a Solr search index
- 4. Recommender application
 - Algorithms for calculating similarities and recommendations to *enrich* the semantic footprint (using a SPARQL endpoint)

Sol

Web application user interface on top of an API

Semantic Model

Taxonomy & Ontology for the HR Recommender

- Taxonomy created from multiple sources
 - Fully developed taxonomies
 - ESCO (<u>https://ec.europa.eu/esco</u>)
 - SEMWEB custom created taxonomy
 - Enrich the taxonomy with text mining (entity extraction)
 - Propel
 - Industry conference content: submitted papers, speakers
 - Fictitious CVs
- Ontology model to add semantic relationships

Semantic Model

Taxonomy sources:

- Skills & Occupations Topics:
 SEMWEB custom taxonomy
- Skills & Occupations:
 ESCO Classification
- Taxonomy enriched with text mining (term extraction) of Topics:
 Propel corpus of industry conference content:
 - submitted papers, speakers

Ontology model (as a layer): Adds semantic relationships

Semantic Model

© Semantic Web Company 2021

Text Mining

What is text mining?

- An application of text analytics, utilizing AI technologies of Natural Language Processing (NLP).
- Extracting passages from text that are relevant in a particular business context.
- Automatically deriving information, and not merely strings of words.
- Transforming unstructured text into meaningful information.

Text mining functions:

- 1. Extracting terms from a corpus as candidate concepts to enrich a taxonomy
- 2. Extracting taxonomy concepts from content for auto-tagging it

For the HR Recommender:

- 1. Extracted terms from the Propel corpus of conference content to enrich the taxonomy
- 2. Auto-tagged documents of profiles, CVs, projects, and job openings with the taxonomy

Text Mining

7	PROJEC		RA TOO	LS /	ADVANCE	ED	en 🔹 Search Th				Q			٩
С.		0 1		4										Đ
	<mark>saurus)</mark> Employers (31 ndustries (144				Job s	Skills 373cca-cd7a-4984-a1b5-b86	idefe3c579			1. Ext	tracting terms from a	(Corp	us Search
	ob roles (6) ocations (4)				Meta	adata & Statistics	Extracted Concepts	Extracted Terms	Corpus Documents	corpus	as candidate concept			
	Skills (3)				Searc	rch Terms			WSI Filter	Corpas				
Con	bora				Sear	ırch			All	to	enrich a taxonomy			
Can	didate Concer alcatel	pts			S	earch Reset					-			
	CA				Extra	racted Terms				Select All	Deselect All Add Candidate Concepts Add to Black	list Ex	port Docu	ments
	ontent lata				Term	n		Relevance	CTS	MIS -	Frequency			
	Digital Asset M	lanager			dema	and generation		18.11	0	21.21	9		0	\otimes
	lorent	gencies			risk a	assessment		10.68	0	20.49	6		0	\oslash
	nformation arc	chitecture ector			Searc	rch Quality Testing		10.53	0	19.83	6		0	\oslash
	Dracle Applica Semantic SEC Semantic Web	Solutions			Stude	lent Association		6.61	0	19.58	7		0	\oslash
	service Contra	acts			cyber	<u>ar security</u>		9.12	0	19.32	9		0	\otimes
	CA echnology inn	ovation			servic	ices company		14.23	0	19.08	8		0	\oslash
	J.S.A JML				Digita	al Transformation		23.43	0	18.97	27		0	\bigcirc
	Jser Experience vendor selection	ce on			metar	adata standards		20.09	0	18.73	11		0	\oslash
Blac	klist													

Text Mining

Concepts					Display Debug Inform	ation
Concept Preferred Label	Normalized Score	Corpora Scor	e Transitive Broader	rs Transitive Broader To Concepts	p Related Concep	ots
Data Scientist	100.0					
requirements	69.0					
pipelining						
modeling	2. Au	to-tage	ping wit	th Extrac	tor AP	
dataset		10 10 80	5			
AWS	https://hr-recommender-poolparty.poolparty.bi					
computer science	extractor/test/extraction					
infrastructure						
				-)		
design			(Dem	io)		
design candidate			(Dem	10)		
design candidate Shadow Conce	pts		(Dem	10)		
design candidate Shadow Conce Concept Preferred Label	pts Normalized Score	Corpora Score	(Dem	Transitive Broader Top Concepts	Related Concepts	
design candidate Shadow Conce Concept Preferred Label Interaction	pts Normalized Score 100.0	Corpora Score 11073.25	(Dem	Transitive Broader Top Concepts	Related Concepts	7
design candidate Shadow Conce Concept Preferred Label Interaction Graph	Pts Normalized Score 100.0 92.0	Corpora Score 11073.25 10287.55	(Dem	Transitive Broader Top Concepts	Related Concepts	?
design candidate Shadow Conce Concept Preferred Label Interaction Graph data extraction	Pts Normalized Score 100.0 92.0 85.0	Corpora Score 11073.25 10287.55 9430.44	(Dem	Transitive Broader Top Concepts	Related Concepts	? ?
design candidate Shadow Conce Concept Preferred Label Interaction Graph data extraction communication	Pts Normalized Score 100.0 92.0 85.0 83.0	Corpora Score 11073.25 10287.55 9430.44 9257.79	(Dem	Transitive Broader Top Concepts	Related Concepts	? ? ?
design candidate Shadow Conce Concept Preferred Label Interaction Graph data extraction communication JSON	Normalized Score 100.0 92.0 85.0 83.0 47.0	Corpora Score 11073.25 10287.55 9430.44 9257.79 5236.87	(Dem	Transitive Broader Top Concepts	Related Concepts	? ? ? ?
design candidate Shadow Conce Concept Preferred Label Interaction Graph data extraction communication JSON remote	Pts Normalized Score 100.0 92.0 85.0 83.0 47.0 42.0	Corpora Score 11073.25 10287.55 9430.44 9257.79 5236.87 4730.15	(Dem	Transitive Broader Top Concepts	Related Concepts	7 7 7 7 7

Stored Data in a Knowledge Graph

What is a knowledge graph?

- Taxonomy + Ontology + Instance Data stored in a graph database, often as triples
- Connects the content/external data layer and the semantic application layer

In the HR Recommender:

The semantic application is based on the Solr search Index.

Instance data are text snippets about each employee.

Application Build: Enrich the Footprint

SPARQL query endpoint

Algorithms for calculating similarities and recommendations to enrich the semantic footprint

of Artice Endpoint		
PREFIX skos: <http: 02="" 2004="" core#="" skos="" www.w3.org=""></http:>	Add Namespace	
PREFIX propel: <https: pp-semantics-dev.semantic-web.at="" propelontology#=""></https:>		
PREFIX esco <http: data.europa.eu="" esco="" model#=""></http:>	SKOS	
SFLECT *		
WHERE /	DC	
2uri ekos prefi abel 2label		
f	DCterms	
SELECT 2uri (MAX/2dictScore) AS 2mayDictScore)	D OWI	
where t		
WITERE { 	RDF	
VALUES /X { <nub. 19802950-0695-4065-9051-774040="" 905095="" data.eu="" opa.eu="" osco="" skii="" td="" }<=""><td></td><td></td></nub.>		
	RDFS	
	CIMO	
BIND(STRDT(1.00,xsd:float) AS ?distScore)	SWC SWC	
} UNION {		
?x esco:isEssentialSkillFor ?uri.		
BIND(STRDT('0.5',xsd:float) AS ?distScore)		
3 UNION /		
Run Query		
	l-h-l	Dist Care
Un	label	maxDistScore
http://data.europa.eu/esco/skiii/1988293b-8693-4de3-9831-7/4840/96389	Java @en	1.00 ^^ <nttp: 2001="" www.w3.org="" xivilscnema#float=""></nttp:>
http://data.europa.eu/esco/skill/eb/e5615-15/5-4486-a1a2-/d39595033c5	ABAP @en	0.7 M <nttp: 2001="" www.w3.org="" xmlschema#float=""></nttp:>
http://data.europa.eu/esco/skill/b4dcbe4t-dc/d-445t-8ce2-d/b9d225e282	AJAX @en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/58d/a289-datd-4363-833t-d1dc4140885e	"APL"@en	"0./"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/56a/t561-1d55-43c9-9cd7-36a0a9bc6c50	"ASP.NE1"@en	"0./"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/820a0683-d2ae-4a88-a648-3feb2f104e44	"Angular"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/3bfcfbe2-4f52-4b55-99d3-cb76a7e8131e	"AngularJS"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/f31ae51f-aff9-42b1-81e9-fc9a55302090	"Apex"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/47b9bbcf-356c-4782-83a4-7f5a1b2b51a3	"Assembly"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/3014fd67-33b2-4992-bffc-042338cdb026	"C"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/4c016b68-4116-468c-9dc6-42710c239e4a	"C#"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/b633eb55-8f1f-4ae6-ab4c-2022ffe2cb7f	"C++"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/def007fa-5fed-4a5f-91a2-b0d7e3db1be1	"COBOL"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/993b1e23-f2de-4bd8-b33f-f86dde1c8e9d	"CoffeeScript"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
http://data.europa.eu/esco/skill/0cd6dcf1-5778-42a5-b685-4d01ae4a4871	"Common Lisp"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/661ac55d-3e7f-4cd8-bad3-4dc4af6efab0	"Crystal"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>
https://pp-semantics-dev.semantic-web.at/PeopleandContentMatchmaker/8e7dabd3-bcd8-4309-adb0-dac16ee331db	"Delphi"@en	"0.7"^^ <http: 2001="" www.w3.org="" xmlschema#float=""></http:>

SPAROL Endpoint

Conclusions

Semantic recommender systems are based on:

- A knowledge graph comprising:
 - 1. A taxonomy, whose concepts are tagged to and/or extracted from the content to be recommended *and* to either matchable content or a user profile
 - 2. An ontology that links concepts with additional semantic relationships
 - 3. Instance data linked to the taxonomy/ontology stored in a search index or graph DB
- A large body of content tagged with the taxonomy

Optionally enhanced with:

Algorithms for weighting/scoring relations

And:

A front-end (user interface) application

Resources

- "From Taxonomies to Recommendation Systems" webinar recording <u>www.poolparty.biz/events/from-taxonomies-to-recommendation-systems</u>
- Recommendation/matchmaking demos
 - HR Recommender <u>https://hr-recommender.poolparty.biz</u>
 - Wine & Cheese Harmonizer
 <u>http://vocabulary.semantic-web.at/GraphSearch</u>
 - Semantic Matchmaker (Matching consultants to projects) <u>https://semantic-matchmaker.poolparty.biz</u>
- "Natural Language Processing with PoolParty" white paper <u>www.poolparty.biz/resources/natural-language-processing-with-poolparty</u>

Questions/Contact

Heather Hedden

Data and Knowledge Engineer Semantic Web Company Inc. One Boston Place, Suite 2600 Boston, MA 02108

857-400-0183 <u>heather.hedden@semantic-web.com</u> <u>www.linkedin.com/in/hedden</u>

Semantic Web Company <u>www.semantic-web.com</u>

PoolParty Semantic Suite www.poolparty.biz

