

From Taxonomies to Recommendation Systems

Semantic Web Company (SWC) and PoolParty

SWC is developer / vendor of **PoolParty Semantic Suite**

Most complete and secure

Semantic Middleware /

Semantic Al platform on
the Global Market

W3C standards compliant

ISO 27001:2013 certified

First release in 2009

Current version 8.0

On-premises or cloud-based

Over **200**

installations world-wide

Semantic AI:

Fusion of Graphs, NLP, and Machine Learning

Named as Visionary in **Gartner's Magic Quadrant** for Metadata Management Systems 2019, 2020

KMWorld listed PoolParty as one of the

Trend-Setting Products
2015 - 2020 and listed
SWC in the AI 50 list of
companies in 2020

© Semantic Web Company 2021 2

Outline

- Why Recommendation Systems
- HR Recommender Example Demo
- How a Recommendation System is Built: HR Recommender
 - Taxonomy and Ontology Development
 - Text Mining: Extractor Service
 - Knowledge Graph and Search Application
- Other Recommenders: Matchmaking Systems

Why Recommendation Systems

Getting the right information to the right people

- There is a lot of information and content people can benefit from.
- They don't know how best to look for information that would benefit them.
- They don't know that the information is there or how to find it.

Making matches of what goes together

Standard search does not support complex matching queries.

A system that provides **suggestions** or **recommendations** to users can be very helpful.

Why Recommendation Systems

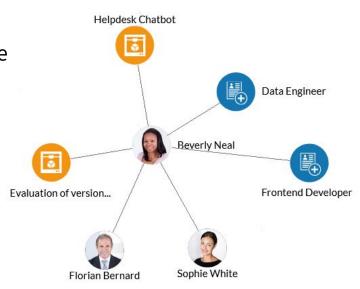
A recommender system (engine) can recommend to its users:

- content of interest
- products to purchase
- people to connect with
- job opportunities
- training to improve skills

A match-making kind of recommender system can recommend:

- matches of applicants to job openings
- matches of consultants to projects
- matches of buyers and sellers

Why Recommendation Systems



HR Recommender System

A semantic matchmaking tool based on a knowledge graph

Use case

- An organization wants to make the best use of the strengths and skills of its employees
- HR staff should be able to:
 - Find candidates for open positions
 - Staff projects
 - Identify professional development needs
- Employees should be able to:
 - Connect with interesting coworkers
 - Browse relevant projects
 - Find career opportunities within the organization

HR Recommender

Demo

HR Recommender front end

https://hr-recommender.poolparty.biz/

How a Recommendation System is Built

Recommender Technologies

- Content-based filtering Similar content recommended based on a single user's interactions
 - ▶ Can only make recommendations on previous interactions or feedback of the user
- Collaborative filtering Recommendations based on interactions from multiple similar users
 - Requires a large number of users

Disadvantages to both content-based and collaborative filtering:

- New users or items which had not been trained upon, don't get recommendations initially: "cold start" problem due to insufficient data
- Can only recommend to the user and not do other matchmaking
- Support Vector Machines (SVM) Machine learning classification method, using algorithms, training examples, statistical learning, which calculates distances between categories (Often used in combination with collaborative filtering)
 - Requires time to train data, and performance varies based on the data.
 - Designed for limited, distinct classes; doesn't have the benefit a taxonomy with synonyms

→ Knowledge-based systems - Based on explicit knowledge of the content, stored in a database

How a Recommendation System is Built

HR Recommender Components

Semantic model

- Taxonomies containing concepts and labels (PoolParty Thesaurus Management)
- Ontology of semantic relations (PoolParty Ontology Management)

Content that is text-mined

CVs, personal profiles, job descriptions, project descriptions (PoolParty Extractor)

Stored data

Knowledge graph and a Solr search index (PoolParty GraphSearch)

Recommender application

- Algorithms for calculating similarities and recommendations to enrich the semantic footprint (PoolParty SPARQL endpoint)
- Web application user interface on top of an API (PoolParty GraphSearch API)

How a Recommendation System is Built

PROFILE

EXTRACT CONCEPTS

STORE IN GRAPHSEARCH

SHOW RESULTS

FIND MATCHES

ENRICH FOOTPRINT

Semantic Model

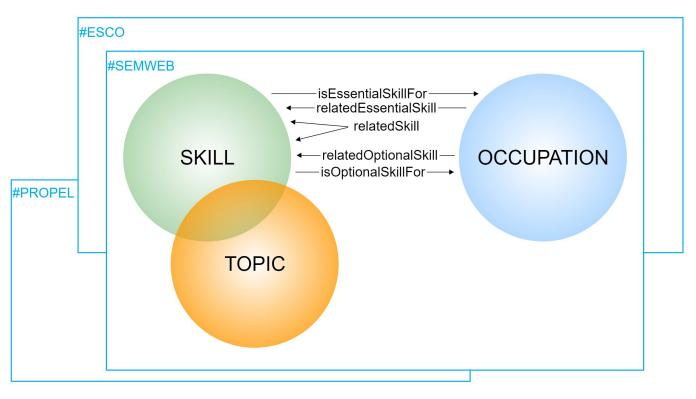
Taxonomy & Ontology for HR Recommender

Taxonomy created from multiple sources

- Fully developed taxonomies
 - ESCO (<u>https://ec.europa.eu/esco</u>)
 - SEMWEB custom created taxonomy
- Enrich the taxonomy with text mining (entity extraction)
 - Propel
 - Industry conference content: submitted papers, speakers
 - Fictitious CVs

Ontology layer to add semantic relationships

Semantic Model



Taxonomy sources:

- Skills & Occupations Topics:
 SEMWEB custom taxonomy
- Skills & Occupations:
 ESCO Classification
- Taxonomy enriched with text mining (term extraction) of Topics:
 Propel corpus of industry conference content: submitted papers, speakers

Ontology layer:

Adds semantic relationships

Semantic Model

Demo

HR Recommender back end taxonomy and ontology

in

PoolParty Thesaurus management

PoolParty Ontology management

Text Mining

What is text mining?

 An application of text analytics, utilizing AI technologies of Natural Language Processing (NLP).

- Extracting passages from text that are relevant in a particular business context.
- Automatically deriving information, and not merely strings of words.
- Transforming unstructured text into meaningful information.

PoolParty Extractor - text mining service

- 1. Extracts terms as candidate concepts from a corpus to enrich the taxonomy
- 2. Extracts taxonomy concepts for auto-tagging documents

For HR Recommender

Tagging documents of profiles, CVs, projects, and job openings

Text Mining

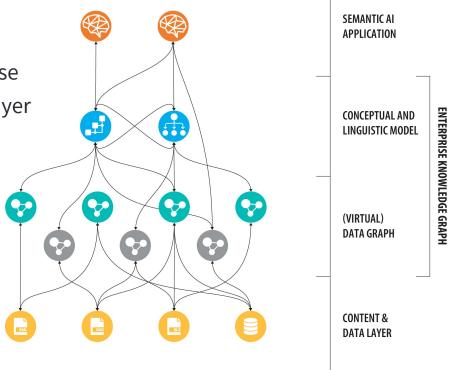
Demo

PoolParty Extractor

- 1. Corpus analysis extraction
- 2. Auto-tagging with Extractor API

Stored Data in a Knowledge Graph

What is a knowledge graph?


Taxonomy + Ontology + Instance DataOften stored as triples in a graph database

 Connects to the content/external data layer and the semantic application layer

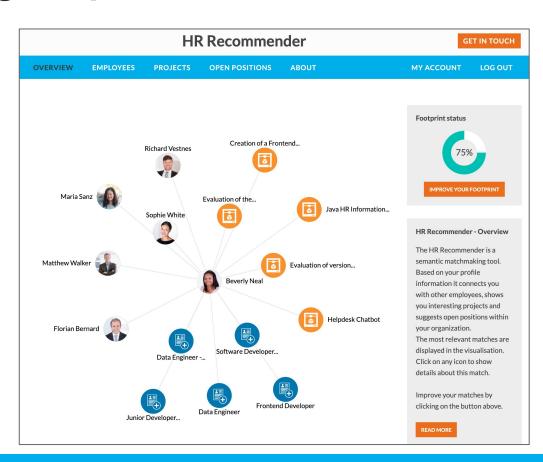
In the HR Recommender:

The semantic application is based on the Solr search Index.

Instance data are text snippets about each employee.

Stored Data in a Knowledge Graph

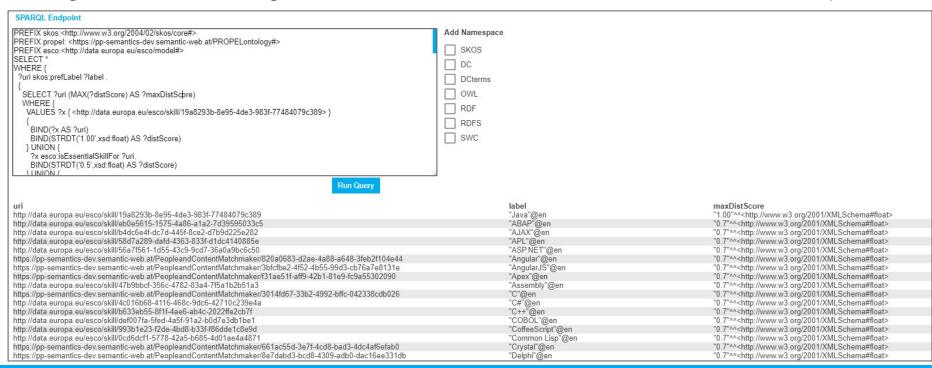



PoolParty GraphSearch

provides an API for search and recommender interfaces, including type-ahead, which is used for the

HR Recommender.

PoolParty
GraphSearch can
also be used for
displaying
interactive
search facets.
(Not used in HR
Recommender.)



Application Build: Enrich the Footprint

SPARQL query endpoint

Algorithms for calculating similarities and recommendations to enrich the semantic footprint

Other Recommendation Systems

Matchmaking Demos

Wine & Cheese Harmonizer

http://vocabulary.semantic-web.at/GraphSearch

Semantic Matchmaker (Matching consultants to projects)

https://semantic-matchmaker.poolparty.biz

Based on semantic data fabric

Conclusions

Semantic recommender systems are based on:

- A knowledge graph comprising:
 - A taxonomy, whose concepts are tagged to and/or extracted from the content to be recommended *and* to either matchable content or a user profile
 - An ontology that links concepts with additional semantic relationships
 - Instance data linked to the taxonomy/ontology stored in a search index or graph DB
- A large body of content tagged with the taxonomy

Optionally enhanced with:

Algorithms for weighting/scoring relations

And nice to have:

A front-end (user interface) application

Contact

Heather Hedden
heather.hedden@semantic-web.com
www.poolparty.biz
www.semantic-web.com