

Building Ontologies for Knowledge Discovery

Heather Hedden | Taxonomy Consultant and Trainer – Hedden Information Management

James Morris | Sr. Information Scientist – Smartlogic

Today's Speakers

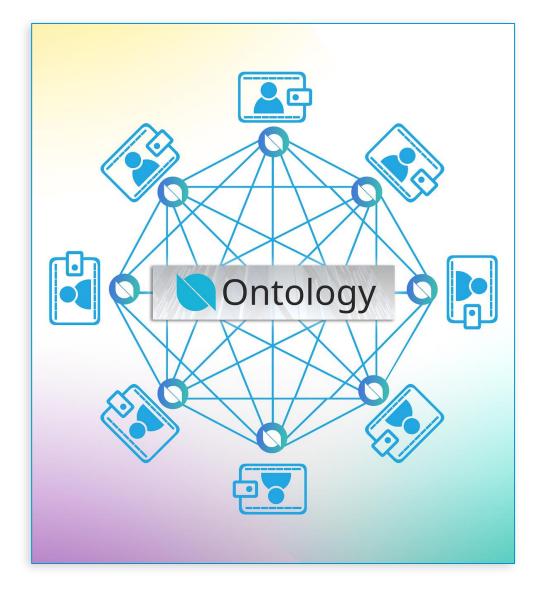
Heather Hedden is a Taxonomy Consultant and Trainer for Hedden Information Management. She is an Instructor of taxonomy-creation online courses, and previously served as Senior Vocabulary editor at Gale, A Cengage Company

Heather is the Author of *The Accidental Taxonomist* (2010, 1st ed.; 2016, 2nd ed.), published by Information Today Inc.

Jim has over 20 years of information systems expertise and has developed proficiency in many library, content, document, taxonomy, and semantic technologies. He thrives on building relationships, influencing across boundaries, and synthesizing different perspectives.

Prior to joining Smartlogic, he worked in pharmaceutical research, academia, and software services. He is a frequent presenter at library and knowledge management conferences, and his paper "Vocabulary Interoperability in the Semantic Web" was published in the Bulletin of the SLA Taxonomy Division in 2013. Jim holds a Master's degree in Information Studies from Drexel University in Philadelphia, PA.

A Few Housekeeping Items


- → This webinar is in broadcast mode all participants are muted.
- → Please put your questions in the GoToWebinar panel and we'll answer as many as we can in the Q & A session.
- → This broadcast is being recorded replay information will be sent to all registrants following the broadcast.

Agenda: Building Ontologies for Knowledge Discovery

- \rightarrow What are Ontologies
- \rightarrow Building Ontologies
- \rightarrow Sources for Ontologies
- \rightarrow Using Ontologies

What are Ontologies?

Ontologies as Knowledge Models

What is a Knowledge Model?

- → A knowledge model describes the entities and organization of information in a domain for a project.
- → A knowledge model comprises the concepts, their labels, their metadata/attributes, their relationships, and the rules for usage.
- → It could be a thesaurus, a taxonomy (as a set of hierarchies, not just one), or an ontology.

Term List	Synonym Ring	Name Authority	Taxonomy	Thesaurus
Ambiguity control		Ambiguity control	Ambiguity control	Ambiguity control
	Synonym control	Synonym control	(Synonym control)	Synonym control
			Hierarchical relationships	Hierarchical relationship
				Associative relationships

Term List	Synonym Ring	Name Authority	Taxonomy	Thesaurus	Ontology
Ambiguity control		Ambiguity control	Ambiguity control	Ambiguity control	Ambiguity control
	Synonym control	Synonym control	(Synonym control)	Synonym control	(Synonym control)
			Hierarchical relationships	Hierarchical relationship	Semantic relationships
				Associative relationships	Classes

Co	ntrolled Vocabu	ularies / Knowl	edge Organizatio	on Systems
Less	S	Support for C	omplexity	More
		Ontolo	gy	
Term List	Synonym Ring	Name Authority	Taxonomy	Thesaurus
Ambiguity control		Ambiguity control	Ambiguity control	Ambiguity control
	Synonym control	Synonym control	(Synonym control)	Synonym control
			Hierarchical relationships	Hierarchical relationship
				Associative relationships

Co	ntrolled Vocab	ularies / Knowl	edge Organizatio	n Systems
Less		Support for C	omplexity	More
			Ontology	
Term List	Synonym Ring	Name Authority	Taxonomy	Thesaurus
Ambiguity control		Ambiguity control	Ambiguity control	Ambiguity control
	Synonym control	Synonym control	(Synonym control)	Synonym control
			Hierarchical relationships	Hierarchical relationship
				Associative relationships

Ontologies Defined

What is an ontology?

- → A complex type of knowledge organization system, or a more abstract layer in describing a knowledge organization system.
- \rightarrow A form of "knowledge representation."
- \rightarrow A kind of knowledge model to comprehensively describe a domain of knowledge.
- → A formal naming and definition of the types, properties and interrelationships of entities in a particular domain.

Ontologies Defined

Ontology Characteristics

(from the perspective of controlled vocabularies/knowledge organization systems)

- \rightarrow Concepts have attributes
- → Concepts belong to classes, based on having shared attribute types
- \rightarrow Classes have semantic relationships between them, which are inherited by the concepts in the classes.
 - Optionally, the ability to support Linked Data

Ontology Types

→ Upper or core ontologies (top-level ontology, upper model, foundation ontology)

- A generic, standard framework to serve as a model for a domain ontology, taxonomy, or other KOS
- Examples: Basic Formal Ontology (BFO), <u>gist</u>, SUMO (Suggested Upper Merged Ontology), SKOS, BIBFRAME, FOAF

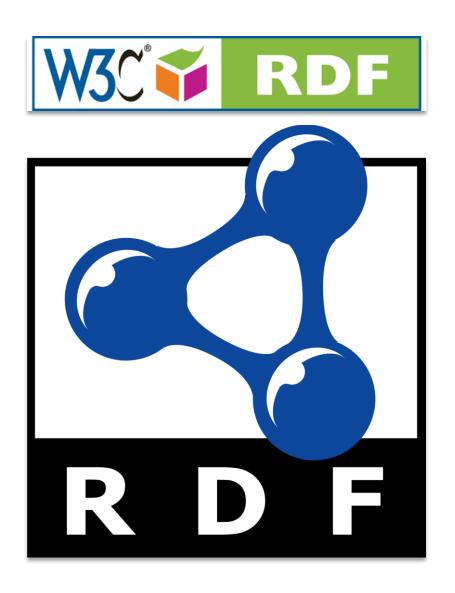
Domain or custom ontologies

- Concepts belong to a specific subject domain
- Examples: <u>Systems Biology Ontology</u>, <u>Gene Ontology</u>, <u>BBC Ontology</u>, <u>Financial Industry Business Ontology (FIBO)</u>
- \rightarrow "Ontology" may also refer to a combination of a taxonomy with a custom ontology layer.

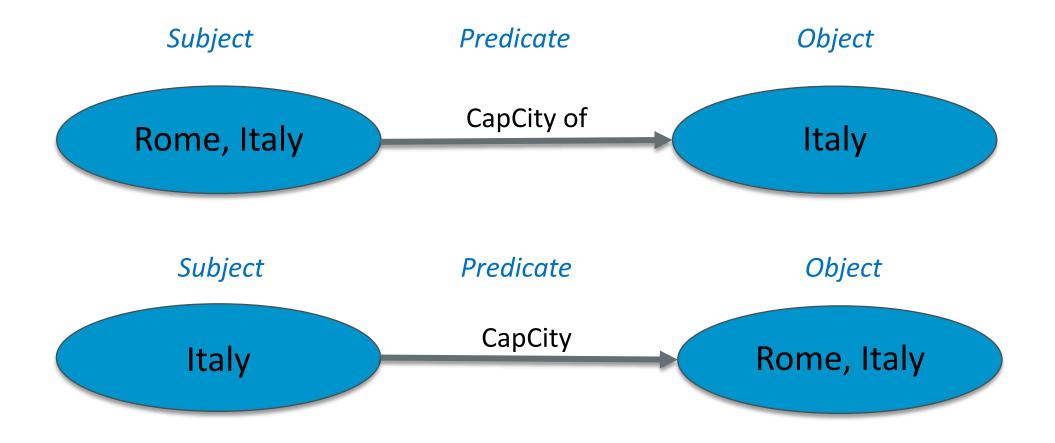
Domain Ontology Example

OWL (Web Ontology Language)

- → A World Wide Web (W3C) specification https://www.w3.org/OWL
- → First published in 2004; OWL 2 (with extended features), published in 2009 <u>https://www.w3.org/TR/owl2-overview</u>
- → "A Semantic Web language designed to represent rich and complex knowledge about things, groups of things, and relations between things"
- → To provide a common way to process the content of web Information. Enables knowledge linking on the web/Semantic Web.
- → A computer-readable language, a declarative language (not a programming or schema language)
- \rightarrow Enables knowledge linking on the web/Semantic Web
- \rightarrow Based on RDF and RDFS. OWL is W3Cs attempt to extend RDFS.



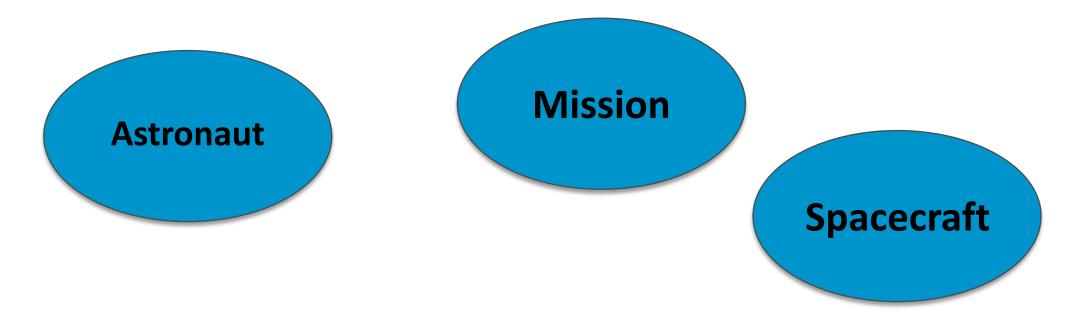
RDF (Resource Description Framework)


- → A World Wide Web (W3C) recommendation https://www.w3.org/TR/rdf11-concepts
- → Adopted by the W3C as a recommendation in 1999, RDF 1.1 specification in 2014
- \rightarrow More fundamental, basic, and generic than OWL.
- \rightarrow "A standard model for data interchange on the Web"
- → Requires the use of URIs (Uniform Resource Identifiers) to specify things and to specify relationships.
- → Facilitates data merging even if the underlying schemas differ.
- → Models information as subject predicate object triples.

RDF triple: (1) Subject – (2) Predicate – (3) Object

OWL basic components

- → **Classes** subjects or objects (domains and ranges) of RDF triples
 - May contain individuals (instances of the class) and other subclasses
 - Sets of concepts that share characteristics and relationships
 - In knowledge organization systems: Concept schemes, top concept in a scheme, or concepts with narrower concepts
- → Individuals subjects or objects (domains and ranges) of RDF triples
 - Members or instances of a class.
 - In knowledge organization systems: Concepts
- → Properties predicates of RDF triples
 - Relations between instances or classes (2-way)
 - Attributes of instances or of classes (1-way)

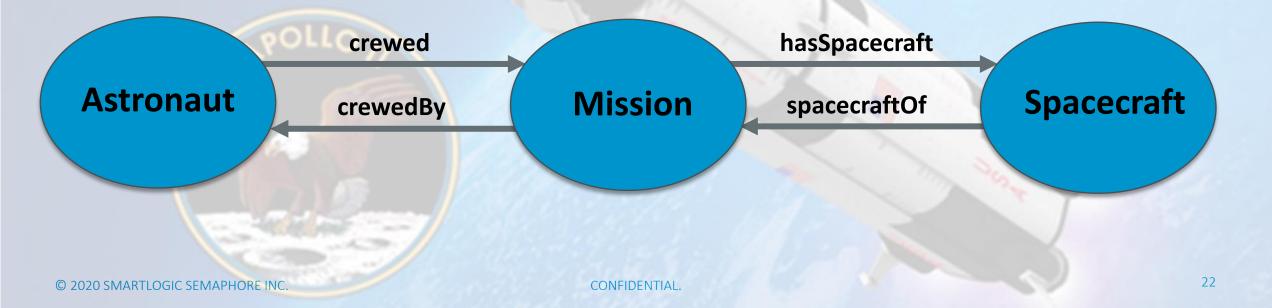

Creating a Domain Ontology (as a custom knowledge organization system)

- 1. Use a tool (such as Semaphore) that builds ontologies in SKOS, RDFS and OWL, so it's interoperable with other SKOS vocabularies and the Semantic Web.
- 2. Consider starting with a core (upper) ontology as a generic model.
- **3.** Knowledge modeling is the basic task:
 - Define the scope
 - Identify the various classes (e.g. people, places, organizations, products)
 - Identify the relationships between classes
 - Identify the attributes for classes
- 4. Create specific instances within the classes and apply the relationships
 - As combining an ontology with the specifics of a taxonomy
 - The taxonomy can already exist and be made more expressive, or it can be created along with the ontology as an integrated project.

Ontology knowledge modeling

Identify and define Classes

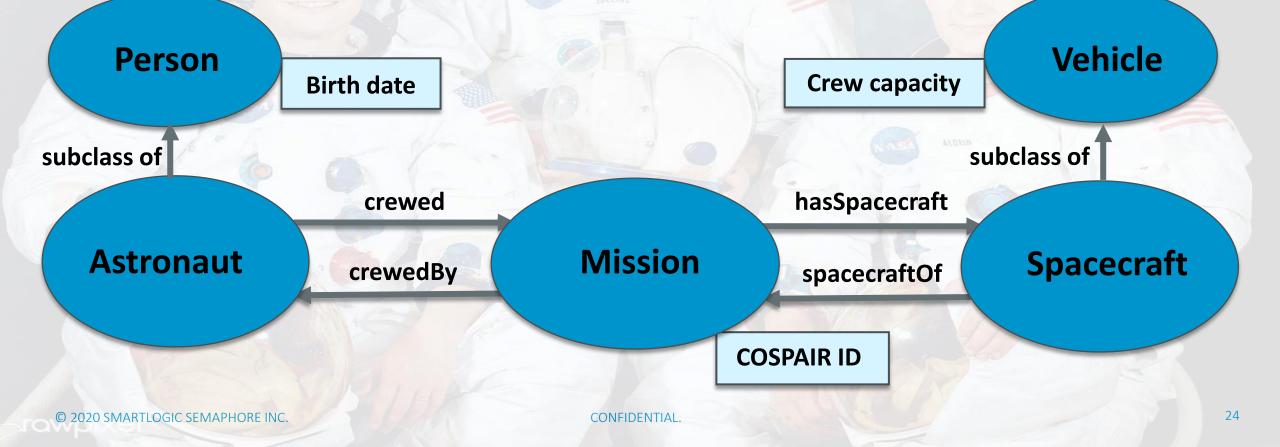
- Specific enough for business needs
- Generic enough to include various, multiple instances
- Not to be more complicated than necessary



Ontology knowledge modeling

Identify and define **Relations** between Classes

- OWL considers Relations as Properties.
- Relations are between pairs of Classes.
- From the "Domain" (Subject) class; To the "Range" (Object) Class.
- Relations are relevant (inherited) between all instances of each Class.
- Although not required, Relations typically are bidirectional (with an inverse).

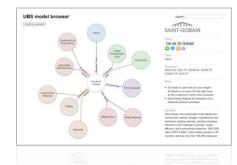

Building Ontologies artlogic[™] **Ontology knowledge modeling** Specify the desired **Attributes** for each Class Launch Simple properties for a specific class vehicle Just enough for business needs 0 Also applicable to all instances within the Class Ο **Mission** Astronaut Spacecraft Birth date **COSPAIR ID** Crew capacity Launch vehicle

• Consider carefully if something should be an Attribute or Class (e.g. Launch vehicle).

Ontology knowledge modeling

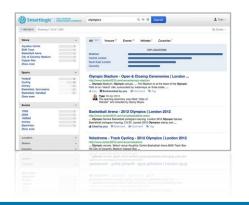
If attributes are shared, consider designating classes as sub-classes of more generic classes.

- Attributes of a class are inherited by its subclasses
- For example, birthdate applies to any "person", not just astronauts.



Semaphore Demonstration

Semaphore : Revealing Smarter Decisions

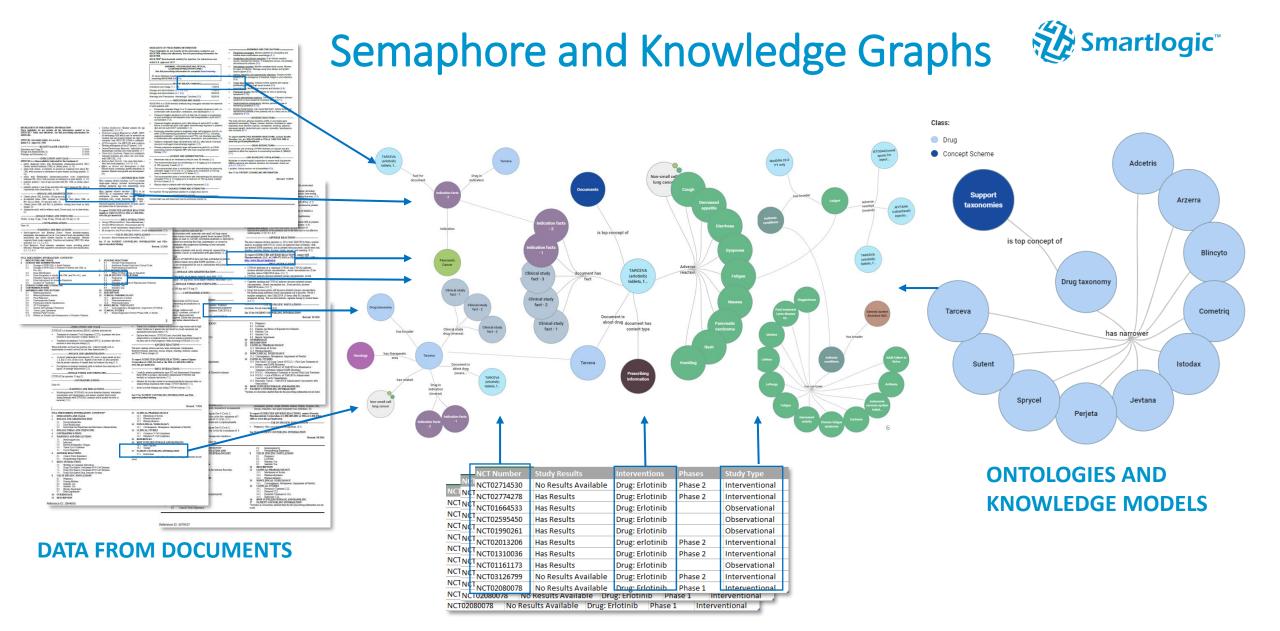


Build and manage semantic models

Simplify the ingestion, development and customization

Enrich, extract and harmonize

- Enrich information assets with complete, consistent and precise metadata
- Extract critical facts, entities and relationships for further processing
- Harmonize different information sources for unified access

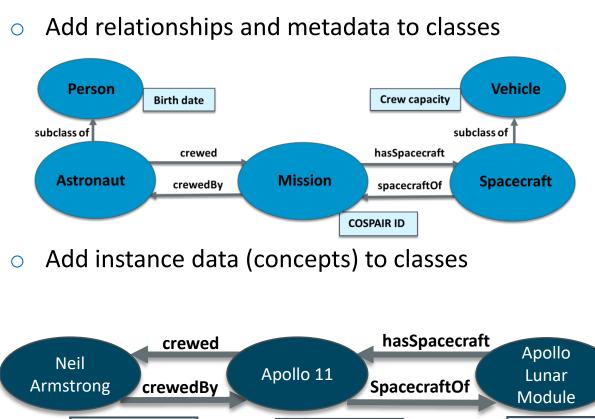


Apply semantics to your business problem

- Enable knowledge discovery
- Support investigative analytics
- Automate manual processes for higher precision

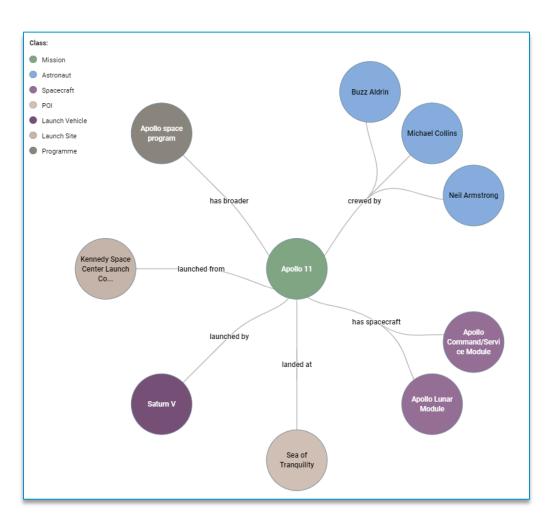
\$P2013 Demo Home					Matthey Jonglez +	0 ?
BROWSE COT					12 PCR	una 12
Saw Canad Parts	Devela Cherally Decument Actions Screenphare					
Home Enterprise Keywords Classification	Name *	Childcare Bill Sammary	¢đ!			
Multiple Column Classification	Topic	Child care it Maturely revives		145		
Test Mining and Enlity Extraction		Ratery wheels School perform	any and davideds			
Semaphone Column Classification	Services	Arison and tollian / Education a		90		
Classified Documents Semaphore Column		School accelerated and performance Schools description plans				
Defaults Site Contents	People (Intities)			Q2		
	Organizations (Entities)	Years foundation health services		8		
	Created at 8/23/2013 3:47	AM by (1 System Aussian) 553 PM by (1 Gaulo Generi	Sere	Cancel		
		AM Ny 🗋 System Account 1952 Mit Ny 🗘 Gavin Gram	244	Canada		

Semaphore delivers these capabilities at enterprise scale



DATA FROM DATABASES

Building Ontologies in Semaphore



• Build class structure

COSPAIR ID =

1969-059A

Birth date =

August 5th, 1930

Crew capacity =

2

Ontologies Help Machines Understand Data

Q: How do we know this text is about Apollo 11?

A: Because we've modeled the evidence.

Q: What other facts are in this text?

→ This mission was the spaceflight that landed the first two humans, who were Americans, on the Moon. Mission commander Neil Armstrong and pilot Buzz Aldrin landed the lunar module Eagle on July 20, 1969, at 20:18 UTC. Armstrong became the first to step onto the lunar surface six hours later on July 21 at 02:56:15 UTC; Aldrin joined him about 20 minutes later. They spent about two and a quarter hours together outside the spacecraft, and collected 47.5 pounds (21.5 kg) of lunar material to bring back to Earth. Michael Collins piloted the command module Columbia alone in lunar orbit while they were on the Moon's surface. Armstrong and Aldrin spent just under a day on the lunar surface before rendezvousing with Columbia in lunar orbit.

→ The mission was launched by a Saturn V rocket from Kennedy Space Center in Merritt Island, Florida, on July 16, and was the fifth manned mission of NASA's Apolio program. The spacecraft had three parts: a command module (CM) with a cabin for the three astronauts, and the only part that landed back on Earth; a service module (SM), which supported the command module with propulsion, electrical power, oxygen, and water; and a lunar module (LM) that had two stages – a lower stage for landing on the Moon, and an upper stage to place the astronauts back into lunar orbit. After being sent toward the Moon by the Saturn V's upper stage, the astronauts separated the spacecraft from it and traveled for three days until they entered into lunar orbit. Armstrong and Aldrin then moved into the lunar module Eagle and landed in the Sea of Tranquility. They stayed a total of about 21.5 hours on the lunar surface. The astronauts used Eagle's upper stage to lift off from the lunar surface and rejoin Collins in the command module. They jettisoned Eagle before they performed the maneuvers that blasted them out of lunar orbit on a trajectory back to Earth. They returned to Earth and landed in the Pacific Ocean on July 24.

→ Using existing controlled vocabularies

- Generally, a custom-created controlled vocabulary/taxonomy is best.
 - Customized to the particular set of content
 - Customized to the particular set of users
- An existing vocabulary may be considered for a taxonomy:
 - As a starting point, to be developed and customized further
 - For indexing external content in certain subjects
 - A term list for a single metadata field or facet (filter) in a faceted taxonomy
- An existing ontology may be considered for use:
 - As a high-level knowledge model
 - As a model for a subject domain (such as biomedicine)

\rightarrow Upper / foundation ontologies

- A model for a knowledge model
- Readily available, free, no license (because they do not have specifics)
- Examples:
 - Basic Formal Ontology (BFO) <u>http://basic-formal-ontology.org</u>
 - gist <u>https://www.semanticarts.com/gist/</u>
 - SUMO (Suggested Upper Merged Ontology) <u>http://www.adampease.org/OP/</u>
 - BIBFRAME http://id.loc.gov/ontologies/bibframe.html
 - FOAF <u>http://xmlns.com/foaf/spec/</u>
 - SKOS <u>https://www.w3.org/TR/2008/WD-skos-reference-20080829/skos.html</u>

SKOS

Class or Individual	Property: Attribute	Property: Attribute	Property: Relation	Property: Relation	
Concepts	Labels & Notation	Documentation	Semantic Relations	Mapping Properties	Collections
Concept	prefLabel	note	broader	broadMatch	Collection
ConceptScheme	altLabel	changeNote	narrower	narrowMatch	orderedCollection
inScheme	hiddenLabel	definition	related	relatedMatch	member
hasTopConcept	notation	editorialNote	broader Transitive	closeMatch	memberList
topConceptOf		example	narrowerTransitive	exactMatch	
		historyNote	semanticRelation	mappingRelation	
		scopeNote			

\rightarrow Domain ontologies

- A knowledge model customized for a subject domain
- Available for license License types vary.
- More exist in certain domains, such as biomedical/life sciences.
- Examples:
 - Gene Ontology <u>http://geneontology.org</u>
 - Open Biomedical Ontologies (OBO) Foundry <u>http://obofoundry.org</u>
 - BBC Ontology <u>https://www.bbc.co.uk/ontologies/bbc</u>
 - Financial Industry Business Ontology (FIBO) <u>https://spec.edmcouncil.org/fibo</u>

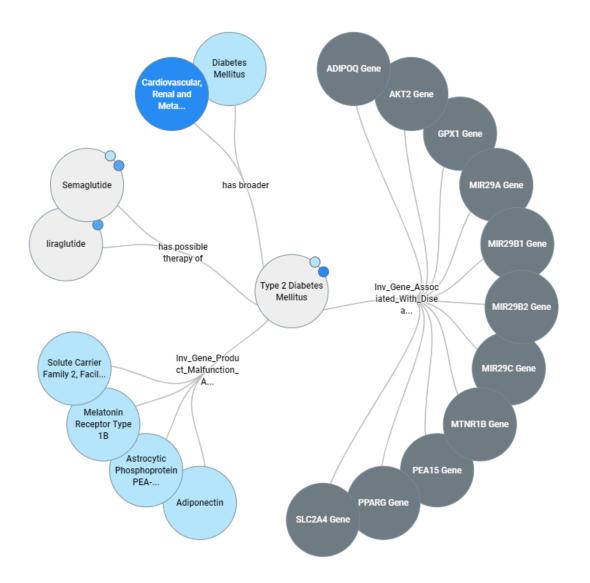
→ Directories of ontologies (and other knowledge organization systems) for license

- Comprehensive:
 - BARTOC (Basel Register of Thesauri, Ontologies & Classification) bartoc.org
 - Research Vocabularies Australia <u>https://vocabs.ands.org.au</u>
 - Open Metadata Registry <u>http://metadataregistry.org/vocabulary/list.html</u>
 - Taxonomy Warehouse <u>www.taxonomywarehouse.com</u>
- Domain-specific (examples):
 - NCBO BioPortal biomedical ontologies <u>bioportal.bioontology.org/ontologies</u>
 - Open Biological and Biomedical Ontology (OBO) Foundry <u>www.obofoundry.org</u>
 - VEST Directory of AIMS (Agricultural Information Management Standards) portal of the FAO <u>aims.fao.org/vest-registry/vocabularies</u>
 - Heritage Data (UK cultural heritage) <u>www.heritagedata.org/blog/vocabularies-provided/</u>

New: SKOS Vocabulary Service	About BARTOC	Contact Top-rated content	Engl	lish 🔻	
Recent content					
BARTOC. Basel Register of Thesauri, Ontologies & Classifi	brg		ILC Title F	inder KOS Registries	Download
Search				Follow @BARTOC_UBBasel Currently indexed vocabularies 2,960	
		GO		Currently indexed registries 89	
Browse			Co	ontent by discipline	
DDC			So	ocial sciences	1, 028
<any></any>	Υ.			eneral works, Computer science an	nd 594
EuroVoc	Language			echnology	483
<any></any>	▼ <any></any>	v	н	istory and Geography	471
KOS Types Vocabulary Loc	ation Form	at		ure Science	413
		ny> 🔻		rts and Recreation	306
<any> 🔻 <</any>	:Any> ▼ <a< td=""><td>ily i</td><td>La</td><td>anguage</td><td>143</td></a<>	ily i	La	anguage	143

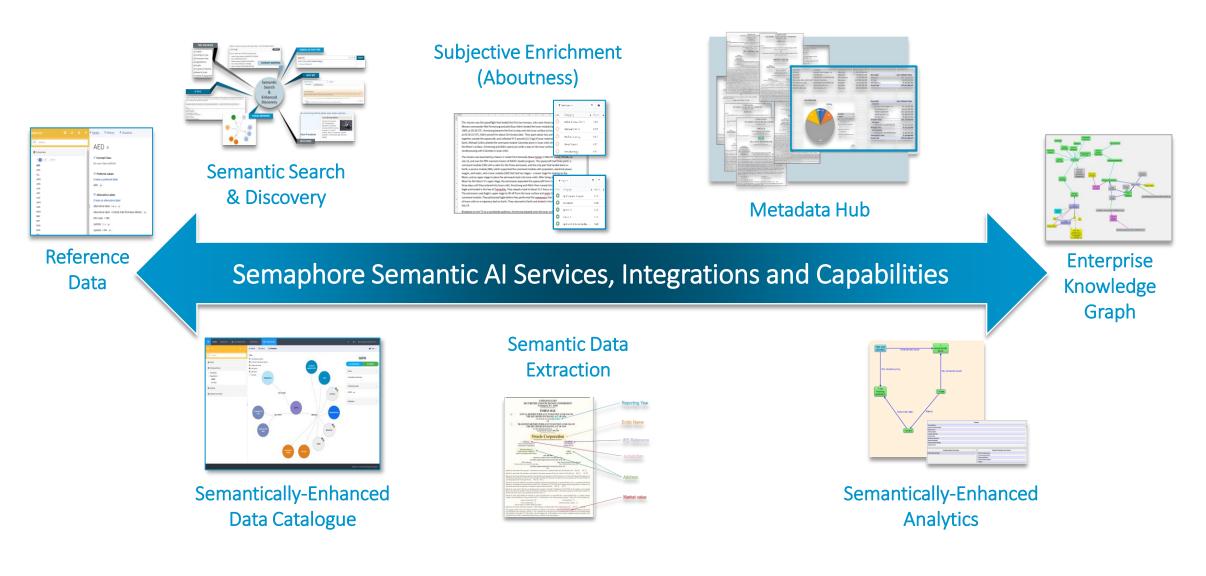
Ontology licensing typically does not have the issues of licensing taxonomies, thesauri, or other controlled vocabularies.

- Format is more standard (RDF)
- The ontology does not need to be as specific as a licensed taxonomy would.
- More ontologies are open source and free than are taxonomies/thesauri for license
- Ontologies are meant to be models to be modified and built out from. Free licenses for taxonomies may prohibit modification.



Using Ontologies

Reusing Ontologies in Semaphore



- \rightarrow All ontologies, including those using OWL, are not modeled in the same way.
- → While a rich source of information, an ontology's purpose may not be yours.
- \rightarrow Planning for the reuse of an ontology:
 - How will it be used in your organization's context?
 - With what other knowledge models will it be used?
 - What downstream systems will use the ontology?
 - How will it be governed; kept current?

Widen Scope of Data to Reveal Better Decisions

Q&A

Thank You

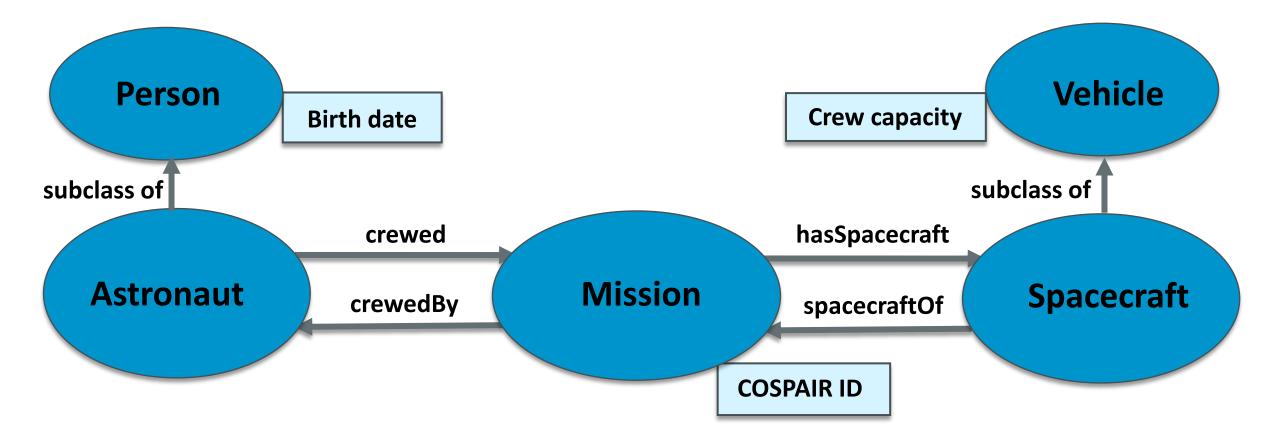
SMARTLOGIC – AMERICAS

111 N MARKET ST. SAN JOSE, CALIFORNIA, 95113 TEL: +1 408 213 9500

SMARTLOGIC – EUROPE, MIDDLE-EAST AND AFRICA 200 ALDERSGATE LONDON, EC1A 4HD TEL: +44 203 176 4500

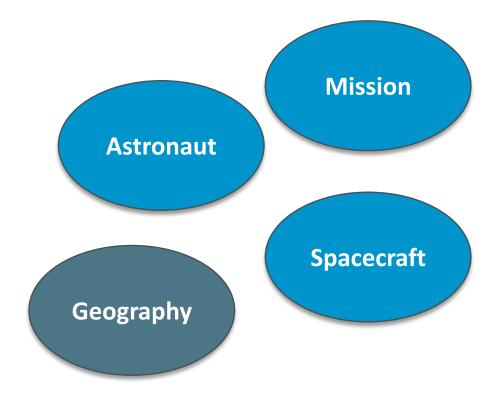
WWW.SMARTLOGIC.COM


Heather Hedden – Taxonomy Consultant and Trainer | Hedden Information Management


heather@hedden.net www.hedden-information.com www.linkedin.com/in/hedden Twitter: @hhedden



Extra slides (take out before final version)


Ontologies as component of knowledge graphs

Reusing Ontologies in Semaphore

